姓 名:刘琦
学 位:博士
导师情况:博士生导师
研究领域:生物信息学(组学人工智能)
E-mail:qiliu@tongji.edu.cn
通讯地址:上海市四平路1239号,同济大学生命科学与技术学院(200092)
实验室主页:中文:http://bm2.tongji.edu.cn/
英文:https://ai4omics.github.io/
个人简介:
刘琦,同济大学生物信息系长聘教授,博士生导师,同济大学上海自主智能无人系统科学中心PI。国家级人才。长期致力于发展人工智能技术赋能的组学解析和精准干预,进行数据驱动的精准医学研究和转化(“AI for Precision Medicine”)。近年来发展了一系列面向组学数据多尺度(单细胞组学),跨模态(多模态组学),有扰动(扰动组学)等特点的AI智能解析的计算方法和计算模型(Nature Computational Science 2024a, 2024b; Cell Genomics 2024; Science Advances 2020; Nature Communications 2019; Genome Biology 2024, 2022; Nucleic Acids Research 2021; Science China – Life Science 2024, 2022; MICCAI 2024),并基于组学智能解析形成面向重大疾病(如肿瘤)的精准干预:包括精准药物诊疗(Nature Communications 2021,2015;Genome Medicine 2023; Science Bulletins 2022a;Chemical Science 2020),精准免疫治疗(Nature Machine Intelligence 2023a, 2023b; Genome Medicine 2019),以及精准基因编辑(Nature Communications 2024; Nature Communications 2023; Genome Biology 2018; Science Bulletins 2022b; Nucleic Acids Research 2020)。受邀在Trends 和WIREs系列(Trends Mol. Med. 2019; Trends Pharmacol. Sci. 2017; Trends Biotechnol. 2016, WIREs Comput. Mol. Sci. 2018)以及计算机科学领域高影响力的期刊和会议如IEEE TKDE/MICCAI/SDM/ICDM等发表论文。其成果先后被Nature Machine Intelligence进行Research Highlight,Cell Genomics Featured Article, 2次入选中国生物信息学算法十大进展,获F1000推荐,入选Trends系列年度“Best of Trends”Award。著《组学机器学习》(科学出版社,2023)。授权精准干预相关发明专利4项(2项组合用药,1项新抗原,1项基因编辑),和罗氏合作申请PCT专利1项(基因编辑)。任ELSEVIER出版社人工智能生命科学交叉领域期刊Artificial Intelligence in the Life Sciences创刊编委,华为公司科学顾问。曾入选《麻省理工科技评论》中国智能计算创新人物、获药明康德生命化学研究奖、吴文俊人工智能自然科学技术奖、微众学者奖、华夏医学科技奖、上海生物信息学会“青年卓越奖”等。入选上海市浦江人才、上海市科技启明星人才、上海市曙光人才、上海市优秀学术带头人。
目前主持及参与了科技部BT&IT重大专项、精准医学重点研发计划、慢病专项重点研发计划,科技部863计划生物信息学重大专项,国家自然科学基金委杰出青年基金,国家自然科学基金委生命语言AI重点专项,上海市基础特区项目,上海市计算生物学重点专项等多项国家和省部级项目。和国际制药公司及互联网公司开展了广泛的合作。同时承担学院本科生“机器学习理论与方法”(上海市一流课程、上海市重点课程建设、智慧树慕课)以及“生物信息学算法与实践”的专业必修课教学任务, 积极进行生物信息学、药物研发和人工智能方向的科普宣传(见: 生物信息学研究的思考,化学界诞生了一个AlphaGO,人工智能应用于新药研发的范式转变,联邦学习能否打破新药研发的反摩尔定律),开展双语及全英文课程建设。于2018年-2023年共5年作为领队教练带领同济大学本科生团队获得国际合成生物学大赛(iGEM)金奖,并于2021年获得iGEM 软件赛道全球Best Software & AI Project奖(Village Awards)。
编写著作:
u组学机器学习 科学出版社 2023(独著)
u可解释人工智能导论 电子工业出版社 2022 (参编)
(杨强,范力欣,朱军,陈一昕,张拳石,朱松纯,陶大程,崔鹏,周少华,刘琦,黄萱菁,张永峰)
u人工智能与药物设计 化学工业出版社 2023 (参编)
近年代表性论文:
[1]. Qi Liu*, Translating “AI for omics” into precision therapy, Medicine Plus, 2024.
[2]. Wenhui Li et al, Qi Liu*, Discovering CRISPR-Cas system with self-processing pre-crRNA capability by foundation models, Nature Communications 2024.
[3].Zhiting Wei et al, Qi Liu*, PerturBase: a comprehensive database for single-cell perturbation data analysis and visualization, Nucleic Acids Research 2024.
[4]. Yicheng Gao et al, Qi Liu*, Toward subtask decomposition-based learning and benchmarking for genetic perturbation outcome prediction and beyond, Nature Computational Science 2024.
[5]. Yicheng Gao, Qi Liu*, Delineating the cell types with transcriptional kinetics, Nature Computational Science 2024.
[6]. Liangzi Mengfang et al, Qi Liu*, Genomics-guided Representation Learning for Pathologic Pan-cancer Tumor Microenvironment Subtype Prediction, MICCAI 2024.
[7]. Yicheng Gao et al., Qi Liu*, Unified cross-modality integration and analysis of T-cell receptors and T-cell transcriptomes by low-resource-aware representation learning, Cell Genomics. Advance Access, 2024. (Cell Genomics Featured Article!)
[8]. Fengying Sun et al., Qi Liu*… ShiTie Liu*, Single- Cell Omics: experimental workflow, data analyses and applications, Science China - Life Sciences. Advance Access, 2024.
[9]. Bin Duan et al., Qi Liu*, Multi-slice Spatial Transcriptome Domain Analysis with SpaDo, Genome Biology. Advance Access, 2024.
[10]. Chen Tang et al., Qi Liu*, Personalized tumor combination therapy optimization using the single-cell transcriptome, Genome Medicine. Advance Access, 2023.
[11]. Qichang Chen et al., Qi Liu*, Genome-wide CRISPR off-target prediction and optimization using RNA-DNA interaction fingerprints, Nature Communications. Advance Access, 2023.
[12]. Yichen Gao et al., Qi Liu*, Pan-Peptide Meta Learning for T-Cell Receptor-Antigen Binding Recognition, Nature Machine Intelligence. Advance Access, 2023. (Nature Machine Intelligence Research Highlight! ESI高引)
[13]. Shaoqi Chen et al., Qi Liu*, Privacy-preserving integration of multiple institutional data for single-cell type identification with scPrivacy, Science China - Life Sciences. Advance Access, 2022.
[14]. Qinchang Chen et al, Qi Liu*, Toward a molecular mechanism-based prediction of CRISPR-Cas9 targeting effects, Science Bulletin, Advance Access, 2022.
[15]. Dongyu Xue et al, Qi Liu*, X-MOL: large-scale pre-training for molecular understanding and diverse molecular analysis, Science Bulletin, Advance Access, 2022.
[16]. Gaoyang Li et al, Qi Liu*, A deep generative model for multi-view profiling of single cell RNA-seq and ATAC-seq data, Genome Biology, Advance Access, 2022.
[17]. Yukong Gong et al, Qi Liu*, DeepReac+: Deep active learning for quantitative modeling of organic chemical reactions, Chemical Science, Advance Access, 2021.
[18]. Biyuzhang et al, Qi Liu*, The tumor therapy landscape of synthetic lethality, Nature Communications, Advance Access, 2021.
[19]. Bin Duan et al, Qi Liu*, Integrating multiple references for single cell assignment, Nucleic Acids Research, Advance Access, 2021.
[20]. Bin Duan et al, Qi Liu*, Learning for single cell assignment, Science Advances, Advance Access, 2020. (入选2020年中国生物信息学算法十大进展)
[21].Jifang Yan et al, Qi Liu*, Benchmarking and integrating CRISPR off-target detection and prediction, Nucleic Acids Research, Advance Access, 2020.
[22]. Chi Zhou et al, Qi Liu*, pTuneos: prioritizing Tumor neoantigens from next-generation sequencing data, Genome Medicine, Advance Access, 2019.
[23]. Chi Zhou et al, Qi Liu*, Towards in silico identification of tumor neoantigens in immunotherapy, Trends in Molecular Medicine, Advance Access, 2019. (Selected as one of the Best Review Article in Cell Trends 2019! Report Link )
[24]. Bin Duan et al, Qi Liu*, Model based Understanding of Single-cell CRISPR Screening, Nature Communications, Advance Access, 2019. (入选2019年中国生物信息学算法十大进展)
[25]. Dongyu Xue et al, Qi Liu*, Advances and challenges in deep generative models for de novo molecule generation, WIREs Computational Molecule Science, Advance Access, 2018.
[26]. Guohui Chuai et al, Qi Liu*, DeepCRISPR: optimized CRISPR guide RNA design by deep learning, Genome Biology, Advance Access, 2018. (F1000 Recommendation)
[27]. Ke Chen et al, Qi Liu*, Towards in-silico prediction of the immune-checkpoint blockade response, Trends in Pharmacological Sciences, Advance Access, 2017. (Most read article in the latest 30 days after publication!)
[28]. Guo-hui Chuai, Qi-Long Wang, Qi Liu*, In-silico meets in-vivo: towards computational CRISPR-based sgRNA design, Trends in Biotechnology, Advance Access, 2016. (Most read article in the latest 30 days after publication!)
[29]. Yi Sun, Zhen Sheng, Chao Ma, Kailin Tang, Ruixin Zhu, Zhuanbin Wu, Ruling Shen, Jun Feng, Dingfeng Wu, Danyi Huang, Dandan Huang, Jian Fei*, Qi Liu*, Zhiwei Cao*, Combining genomic and network characteristics for extended capability in predicting synergistic drugs for cancer, Nature Communications, Advance Access, 2015.
课题组常年招聘助理教授,博士后,研究助理;并欢迎博士生,硕士生,本科生报考和交流。
Copyright© 2011-2015 生命科学与技术学院, All rights reserved
地址:上海市四平路1239号 电话:021-65981041 传真:65981041