教授

刘琦

发布时间:2019-05-08  

       

姓         名:刘琦

学         位:博士

导师情况:博士生导师

研究领域:生物信息学(组学人工智能)

E-mailqiliu@tongji.edu.cn

通讯地址:上海市四平路1239号,同济大学生命科学与技术学院(200092)

实验室主页:中文:http://bm2.tongji.edu.cn/

            英文:https://ai4omics.github.io/


个人简介:

 合肥工业大学计算机应用专业本科,浙江大学计算机科学专业硕士,浙江大学-美国佐治亚大学系统生物学博士联合培养,香港科技大学人工智能方向博士后。现任同济大学生命科学与技术学院生物信息系长聘教授,博士生导师,国家级青年人才。系中国计算机学会(CCF)杰出会员。任ELSEVIER出版社人工智能生命科学交叉领域杂志 Artificial Intelligence in the Life Sciences编委。其在人工智能和生物组学交叉领域的研究工作先后多次入选中国生物信息学研究十大进展,获F1000推荐。获吴文俊人工智能自然科学技术奖、药明康德生命化学奖,微众学者奖等。上海市曙光人才,上海市启明星人才,上海市浦江人才,上海市优秀学术带头人。 

主要研究方向为生物信息学。我们的生物医药大数据挖掘课题组(BM2, stand for Biological and Medical Big Data Mining)致力于组学人工智能驱动的复杂疾病(肿瘤)的精准医学研究(精准药物诊疗、精准免疫治疗、精准基因编辑)。逐步形成了较有特色的AI和组学数据分析相结合的“AI for Omics”交叉研究范式。课题组目前开发了相应的计算软件平台20余项,申请和授权发明专利以及软件著作权多项。研究领域如下:

 (1基于人工智能,发展组学有效表征和分析的新理论、新模型和新算法,提高公共生物组学分析的再利用价值,支撑下游的精准医学研究Nature Communications 2019; Science Advances 2020; Genome Biology 2022; Nucleic Acids Research 2021; Science China-Life Science 2022)。

2基于人工智能和组学挖掘,赋能复杂疾病(肿瘤)的精准药物诊疗(靶点识别,药物发现,精准用药)Nature Communications 2021, 2015; Genome Medicine 2023;  Chemical Science 2020; Science Bulletins 2022a; WIREs Computational Molecular Science 2018)

3)基于人工智能和组学挖掘,赋能复杂疾病(肿瘤)的精准免疫治疗(Nature Machine Intelligence 2023a; Genome Medicine 2019; Trends in Molecular Medicine 2019; Trends in Pharmacology Science 2017)

4)基于人工智能和组学挖掘,赋能复杂疾病的精准基因编辑Nature Communications 2023; Genome Biology 2018; Nucleic Acids Research 2020; Science Bulletins 2022b; Trends in Biotechnology 2016)。


目前主持及参与了科技部BT&IT重大专项,精准医学重点研发计划,慢病专项重点研发计划,科技部863计划生物信息学重大专项,国家自然科学基金等多项国家和省部级项目。和国际制药公司及互联网公司开展了广泛的合作。同时承担学院本科生“机器学习理论与方法”以及“生物信息学算法与实践”的专业必修课教学任务, 积极进行生物信息学、药物研发和人工智能方向的科普宣传(见: 生物信息学研究的思考,化学界诞生了一个AlphaGO, 人工智能应用于新药研发的范式转变,联邦学习能否打破新药研发的反摩尔定律), 开展双语及全英文课程建设。2018-20235年作为领队教练带领同济大学本科生团队获得国际合成生物学大赛(iGEM)金奖,并于2021年获得iGEM 软件赛道全球Best Software & AI ProjectVillage Awards)。


编写著作:

u学机器学习 科学出版社 2023(独著)

u可解释人工智能导论 电子工业出版社 2022 (参编)

(杨强,范力欣,朱军,陈一昕,张拳石,朱松纯,陶大程,崔鹏,周少华,刘琦,黄萱菁,张永峰)

u人工智能与药物设计 化学工业出版社 2023 (参编)

  

近年代表性论文:

[1]. Chen Tang et al., Qi Liu*, Personalized tumor combination therapy optimization using the single-cell transcriptome, Genome Medicine. Advance Access, 2023.

[2]. Qichang Chen et al., Qi Liu*, Genome-wide CRISPR off-target prediction and optimization using RNA-DNA interaction fingerprints, Nature Communications. Advance Access, 2023.

[3]. Yichen Gao et al., Qi Liu*, Pan-Peptide Meta Learning for T-Cell Receptor-Antigen Binding Recognition, Nature Machine Intelligence. Advance Access, 2023.

[4]. Shaoqi Chen et al., Qi Liu*, Privacy-preserving integration of multiple institutional data for single-cell type identification with scPrivacy, Science China - Life Sciences. Advance Access, 2022.

[5]Qinchang Chen et al, Qi Liu*, Toward a molecular mechanism-based prediction of CRISPR-Cas9 targeting effects, Science Bulletin, Advance Access, 2022.

[6]Dongyu Xue et al, Qi Liu*, X-MOL: large-scale pre-training for molecular understanding and diverse molecular analysis, Science Bulletin, Advance Access, 2022.

[7]Gaoyang Li et al, Qi Liu*, A deep generative model for multi-view profiling of single cell RNA-seq and ATAC-seq data, Genome Biology, Advance Access, 2022.

[8]Yukong Gong et al, Qi Liu*, DeepReac+: Deep active learning for quantitative modeling of organic chemical reactions, Chemical Science, Advance Access, 2021.

[9]Biyuzhang et al, Qi Liu*, The tumor therapy landscape of synthetic lethality, Nature Communications, Advance Access, 2021.

[10]. Bin Duan et al, Qi Liu*, Integrating multiple references for single cell assignment, Nucleic Acids Research, Advance Access, 2021.

[11]. Bin Duan et al, Qi Liu*, Learning for single cell assignment, Science Advances, Advance Access, 2020. (入选2020年中国生物信息学应用十大进展) 

[12].Jifang Yan et al, Qi Liu*, Benchmarking and integrating CRISPR off-target detection and prediction, Nucleic Acids Research, Advance Access, 2020.

[13]. Chi Zhou et al, Qi Liu*, pTuneos: prioritizing Tumor neoantigens from next-generation sequencing data, Genome MedicineAdvance Access, 2019.   

[14]. Chi Zhou et al, Qi Liu*, Towards in silico identification of tumor neoantigens in immunotherapy, Trends in Molecular Medicine, Advance Access, 2019. (Selected as one of the Best Review Article in Cell Trends 2019! Report Link )

[15]. Bin Duan et al, Qi Liu*, Model based Understanding of Single-cell CRISPR Screening, Nature Communications, Advance Access, 2019. (入选2019年中国生物信息学应用十大进展)

[16]. Dongyu Xue et al, Qi Liu*, Advances and challenges in deep generative models for de novo molecule generation, WIREs Computational Molecule Science, Advance Access, 2018.

[17]. Guohui Chuai et al, Qi Liu*DeepCRISPR: optimized CRISPR guide RNA design by deep learning, Genome Biology, Advance Access, 2018.  (F1000 Recommendation)

[18]. Ke Chen et al, Qi Liu*, Towards in-silico prediction of the immune-checkpoint blockade response, Trends in Pharmacological Sciences, Advance Access, 2017. (Most read article in the latest 30 days after publication!) 

[19]. Guo-hui Chuai, Qi-Long Wang, Qi Liu*, In-silico meets in-vivo: towards computational CRISPR-based sgRNA design, Trends in Biotechnology, Advance Access, 2016. (Most read article in the latest 30 days after publication!)

[20]. Yi Sun, Zhen Sheng, Chao Ma, Kailin Tang, Ruixin Zhu, Zhuanbin Wu, Ruling Shen, Jun Feng, Dingfeng Wu, Danyi Huang, Dandan Huang, Jian Fei*, Qi Liu*, Zhiwei Cao*, Combining genomic and network characteristics for extended capability in predicting synergistic drugs for cancer, Nature Communications, Advance Access, 2015.

  

课题组常年招聘助理教授,博士后,研究助理;并欢迎博士生,硕士生,本科生报考和交流。

Copyright© 2011-2015 生命科学与技术学院, All rights reserved

地址:上海市四平路1239号 电话:021-65981041 传真:65981041