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Pluripotent stem cells, having self-renewal capacities and

multi-lineage differentiation abilities, offer great potential in

disease modeling and therapeutic applications. The successful

generation of induced pluripotent stem cells (iPSCs) by the

Yamanaka group in 2006 is a milestone event in both

reprogramming and stem cell research fields, which makes

in vitro somatic cell reprogramming and personalized stem cell

therapy feasible. During the past 10 years, several important

progresses have been made in uncovering the molecular

mechanisms involved in the reprogramming process, which

shed light on improving the reprogramming efficiency and iPSC

quality. Here, we briefly review the important progresses in the

epigenetic regulation including histone and DNA modifications

during somatic cell reprogramming.
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Introduction
Somatic cell reprogramming, which involves erasing the

somatic memories and obtaining pluripotent state similar

to that of embryonic stem cells (ESCs), represents the

research trend in the field of stem cell biology. iPSCs,

generated by ectopic expression of key transcriptional

factors, exhibit similar characteristics to ESCs with a

remarkable developmental plasticity and the capacity of

indefinite self-renewal, offering significant prospects for

disease modeling and potential clinical therapy. More

importantly, the forced expression of a set of transcrip-

tional factors can not only achieve somatic cell reprogram-

ming, but also fulfill the conversions among different types

of cells or trans-differentiation. Although the Yamanaka

factors (Oct4, Sox2, Klf4, and c-Myc, OSKM) alone are
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able to reprogram somatic cells into iPSCs, the mecha-

nisms involved in the reprogramming process are still in

the blackbox. Recent work from Plath’s lab demonstrates

that collaborative interactions exist among Yamanaka

factors and with stage-specific transcription factors, direct-

ing both somatic-enhancer inactivation and pluripotency-

enhancer selections to orchestrate reprogramming events

[1�]. Several studies dissecting the reprogramming process

have shown that the transcriptional factors need assistants

from different numbers of epigenetic modifiers including

histone post-translational modifying enzymes, nucleo-

some remodeling factors, histone chaperones and newly

discovered DNA modifying enzymes at different stages

during somatic cell reprogramming [2–5]. These epige-

netic modifiers, mainly recruited by specific trans-

criptional factors, help the reprogramming cells to reset

and rebuild the epigenetic information stored on chroma-

tin, breaking the concrete barriers between various cell

types.

Different from the prokaryotic cells in which the expres-

sion of genes only needs naked DNA as templates,

transcription of genes, which is the most fundamental

biological process responsible for cell identities, in

eukaryotic cells is tightly correlated with the chromatin

state. Massive changes in the chromatin state, at DNA

and/or histone levels can significantly influence the tran-

scriptome and ultimately result in cell fate conversions.

Comparison of the somatic state with the pluripotent state

reveals that the somatic cells show a dense chromatin

state (heterochromatin) while most stem cells exhibit an

open and loose chromatin state (euchromatin) more fea-

sible to accommodate quick changes on transcriptome.

The reprogramming process is very inefficient to over-

come such barriers. Thus, understanding the roles of

epigenetic factors during reprogramming will help to

improve the efficiency of iPSC technique and generate

more qualified iPSCs during reprogramming. This review

will focus on the current understanding of epigenetic

regulators involved in somatic cell reprogramming.

Histone modifications and responsible
enzymes in reprogramming
Chromatin marks, modifiers and readers can serve as

both facilitators and impediments during somatic repro-

gramming process. The idea that H3K9me3-marked

heterochromatin in somatic cells are early barriers to

reprogramming is supported by the findings that deple-

tion of several H3K9 methyltransferases including

SUV39H1/H2, EHMT1, EHMT2, and SETDB1 in fibro-

blast cells increases the efficiency of iPSC production

[5–7]. Dissection of human reprogramming process from
www.sciencedirect.com
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fibroblasts to iPSCs also discovers megabase-sized

domains of the fibroblast genome refractory to OSKM

binding with the dominant H3K9me3 chromatin feature

during the 48 hours of reprogramming [6]. And most of

these regions will become accessible in the minority of

cells that become pluripotent [6]. In addition, this study

also demonstrates that the initial binding pattern of the

four factors is markedly different compared to that in pre-

iPSCs, iPSCs and ESCs. OSK act as pioneer factors

initially binding to the distal elements of genes required

for reprogramming with closed chromatin features in

lack of evident histone marks, while c-Myc enhances

chromatin binding by OSK factors [6]. Interestingly,

recent work analyzing mouse reprogramming process

holds different views [1�]. Although emphasizing the

pioneer activity of OSK and changes in binding pattern

of the four factors during reprogramming, they have

found that OSK predominantly bind active somatic

enhancers with H3K4me1 and H3K27ac marks in initial

stage of reprogramming and immediately initiate their

inactivation by inducing somatic transcriptional factors

redistribution [1�]. Furthermore, H3K9me3 is also a pri-

mary epigenetic determinant, and removal of this mark

leads to fully reprogrammed iPSCs. Vitamin C can accel-

erate reprogramming and knockdown of Kdm3b in pre-

iPSCs blocks vitamin C-induced further reprogramming,

indicating the cooperative work between vitamin C

and H3K9me3 demethylase to reduce the H3K9me3

level in pre-iPSCs [8,9]. While BMP contributes to build

H3K9me3 blocks to stop reprogramming at pre-iPSC

stage, and knockdown of the H3K9 methyltransferase

SETDB1 rescues the inhibitory effect of BMP, suggest-

ing that H3K9 methyltransferases as downstream targets

of BMPs [9]. H3K9me3 and DNA methylation-specific

reader proteins, including the Hp1 (Cbx3) [7] and Mbd3

[10] can also impede reprogramming. However, studies

have found MBD3/NuRD complex function is required

in induction of pluripotency from neural stem cells and

reprogramming of epiblast-derived stem cells to naı̈ve

pluripotency, suggesting the positive role of MBD3/

NuRD complex in reprogramming in a context-depen-

dent manner [11].

In contrast, active chromatin marks, for example

H3K4me2, are targeted to some pluripotency-related

enhancers during early stage of reprogramming [12]. This

process may cooperate with the H3K4me3 reader WDR5

and H3K27 demethylase UTX, which are two core com-

ponents in mammalian trithrox complex that facilitate

self-renewal of ESCs and somatic cell reprogramming

[13,14]. Other histone modifying enzymes including

the H3K36 demethylase KDM2A/B and chromatin remo-

deling complex BAF also help to improve the reprogram-

ming efficiencies of iPSC [15–17]. Moreover, histone

arginine deiminase PADI4 facilitates reprogramming

by citrullination of histone H1 and replacing them from

chromatin [18]. Taken together, it appears a highly
www.sciencedirect.com 
orchestrated exchange of histone modifications through

space and time underlies the transition of somatic cells

toward a pluripotent state during the reprogramming

process.

Histone variants in reprogramming
In mouse and human genome, canonical histone proteins

are encoded by multiple copies of genes spreading all

over the genome. These genes share the same protein

sequences with little differences in DNA sequences.

Although these genes are under highly purifying selection

during evolution, a small group of non-canonical variants

of histones emerged from canonical histones with one or

a few amino acid differences. These histone variants

are expressed at relatively low levels but have distinct

biological functions by altering the conformation of

nucleosomes. Massive replacements of canonical histones

by non-canonical histone variants (or vice versa) can be

observed during fertilization or germ cell generation,

which are correlated with cell reprogramming and cell

fate alteration.

Recent study in histone variant H2A.X function reveals it

functions as a quality control marker to distinguish the

developmental potentials of mouse ESCs or iPSCs [19�].
In ESCs, H2A.X is specifically targeted to negatively

regulate extra-embryonic lineage gene expression, pre-

venting trophectoderm lineage differentiation. The spe-

cific H2A.X deposition patterns in ESCs are faithfully

recapitulated in iPSCs that support the development of

‘all-iPSC’ animals via tetraploid complementation, while

aberrant deposition of H2A.X will result in failure to

generate ‘all-iPSC’ embryonic development, up-regula-

tion of extra-embryonic lineage genes, and a pre-disposi-

tion to extra-embryonic differentiation.

Two histone variants TH2A and TH2B, highly expressed

in the mouse oocyte, play important roles in activation of

paternal genome during fertilization and OSKM-induced

somatic reprogramming [20�]. Combinational transduc-

tion of Oct4, Klf4 and Th2a/b can reprogram somatic cells

into the pluripotent state efficiently. Notably, the roles of

TH2A/B in reprogramming are very likely due to their

deposition of chaperone NPM. Moreover, NPM can lead

to global de-condensation of sperm chromatin during

fertilization and of somatic cell nuclei during somatic cell

nuclear transfer (SCNT), thus significantly increase the

success rates of reprogramming, suggesting that the

TH2A/B replacement is a general phenomena for both

in vitro and in vivo reprogramming and genome reactiva-

tion. Recent studies have also shown that TH2A/B as well

as NPM can reprogram human somatic cells and improve

the quality of human iPSCs.

Different from the positive roles of TH2A/B and their

chaperone in somatic reprogramming and paternal

genome activation, some other histone variants hinder
Current Opinion in Genetics & Development 2017, 46:156–163
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efficient reprogramming. MacroH2A is one of the repres-

sive histone variants associated with differentiation and

involved in maintenance of gene silencing and X-chro-

mosome inactivation. After fertilization, the maternal

macroH2As progressively disappear until just before

zygotic genome activation (ZGA) at late 2-cell stage,

while the expression of embryonic macroH2A begins

only after the 8-cell stage, which suggests a negative role

of this histone variant during reprogramming [21].

Nuclear transfer experiments show macroH2As provide

the inactive X-chromosome and pluripotency genes resis-

tance to reprogramming in donor nuclei [22]. Also, the

removal of macroH2As increases iPSC formation fre-

quency up to 25-fold [23]. Chromatin immunoprecipita-

tion shows macroH2As occupy pluripotency gene promo-

ters and overlap with the repressive histone mark

H3K27me3 [24], which is later replaced by the active

histone mark H3K4me3 during reprogramming [25].

Thus, while some histone variants are important for

the activation of quiescent genomes, some play important

roles in maintaining the somatic cell epigenome at the

repressive state.

Similar to histone variants, some histone chaperones also

participate in somatic cell reprogramming. Aprataxin

PNK-like factor (APLF), a histone H3/H4 tetramer

chaperone, can promote the assembly and activity of

non-homologous end joining (NHEJ) protein complexes

[26]. During reprogramming, APLF can accelerate the

process of cellular reprogramming and increase the effi-

ciency of iPSC generation by augmenting the expression
Figure 1
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of E-cadherin (Cdh1) and its implicated mesenchymal-to-

epithelial transition (MET) [27].

CAF-1 is the most important replication dependent his-

tone chaperone responsible for re-assembling nucleo-

some right after DNA replication [28]. With the help

of CAF-1, dissociated old histones and newly synthesized

histones are randomly incorporated into two sister chro-

mosomes. In a recent study from Hochedlinger’s lab

[29��], they used two comprehensive RNAi screen to

identify important chromatin factors during reprogram-

ming from mouse fibroblasts to iPSCs, and found that

the subunits of the CAF-1 complex emerged as the most

prominent hits. Mechanistic studies revealed that the

suppression of CAF-1 could lead to a more accessible

chromatin structure at enhancer elements early during

reprogramming, indicating its important role as a regulator

of somatic identity during the transcription factor-induced

cell fate transitions and cellular plasticity modulation.

Overall, the recently discovered histone modification-

related factors functioning in somatic cell reprogramming

were summarized in Figure 1 and Table 1.

DNA methylation/demethylation in
reprogramming
Deposition of methylation on CpG dinucleotides in chro-

matin results in transcriptional silencing, heterochromatin

formation, imprinting formation and genomic stability.

DNA methyltransferases (DNMTs) are one type of epi-

genetic modifiers that specifically catalyze CpG dinucleo-

tide methylation (mCpG). So far, there are three DNMTs
microH2A
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matic cells to pluripotent state. The above ones such as SETDB1 and

, WDR5, etc. can facilitate reprogramming.
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Table 1

Epigenetic modifications and modifiers in OSKM-induced somatic reprogramming.

Epigenetic

modifications/

modifiers

Biochemical function Role for reprogramming Reference

SUV39H1/H2 H3K9 methyltransferase Suppress reprogramming Onder TT, Kara N, Cherry A, Sinha AU, Zhu N, Bernt

KM, Cahan P, Mancarci BO, Unternaehrer J, Gupta

PB, et al.: Chromatin-modifying enzymes as
modulators of reprogramming. Nature 2012,

483:598-U119

EHMT1, EHMT2 H3K9

methyltransferases

Associated with

transcriptional repression

Onder TT, Kara N, Cherry A, Sinha AU, Zhu N, Bernt

KM, Cahan P, Mancarci BO, Unternaehrer J, Gupta PB,

et al.: Chromatin-modifying enzymes as modulators

of reprogramming. Nature 2012, 483:598-U119

SETDB1 H3K9

methyltransferases

Suppresses reprogramming Sridharan R, Gonzales-Cope M, Chronis C, Bonora G,

McKee R, Huang C, Patel S, Lopez D, Mishra N,

Pellegrini M, et al.: Proteomic and genomic

approaches reveal critical functions of H3K9

methylation and heterochromatin protein-1gamma

in reprogramming to pluripotency. Nat Cell Biol

2013, 15:872-882.

MBD3 H3K9me3 and DNA

methylation-specific

reader protein

Content-dependent manner Rais Y, Zviran A, Geula S, Gafni O, Chomsky E, Viukov

S, Mansour AA, Caspi I, Krupalnik V, Zerbib M, et al.:

Deterministic direct reprogramming of somatic

cells to pluripotency. Nature 2013, 502:65-70.

dos Santos RL, Tosti L, Radzisheuskaya A, Caballero

IM, Kaji K, Hendrich B, Silva JC: MBD3/NuRD
facilitates induction of pluripotency in a context-

dependent manner. Cell Stem Cell 2014, 15:102-110.

HP1 H3K9me3 and DNA

methylation-specific

reader protein

Binds specifically to

methylated histone H3K9 via

their chromodomain critical

barriers of reprogramming

Sridharan R, Gonzales-Cope M, Chronis C, Bonora G,

McKee R, Huang C, Patel S, Lopez D, Mishra N,

Pellegrini M, et al.: Proteomic and genomic

approaches reveal critical functions of H3K9

methylation and heterochromatin protein-1gamma

in reprogramming to pluripotency. Nat Cell Biol

2013, 15:872-882.

WDR5 H3K4me3 reader Interacts with the pluripotency

transcription factor Oct4

Ang YS, Tsai SY, Lee DF, Monk J, Su J, Ratnakumar K,

Ding J, Ge Y, Darr H, Chang B, et al.: Wdr5 mediates

self-renewal and reprogramming via the embryonic

stem cell core transcriptional network. Cell 2011,

145:183-197.

UTX H3K27 demethylase Directly partners with OSK

reprogramming factors and

uses its histone demethylase

catalytic activity to facilitate

iPSC formation

Mansour AA, Gafni O, Weinberger L, Zviran A, Ayyash

M, Rais Y, Krupalnik V, Zerbib M, Amann-Zalcenstein

D, Maza I, et al.: The H3K27 demethylase Utx

regulates somatic and germ cell epigenetic
reprogramming. Nature 2012, 488:409-413.

KDM2A/B H3K36 demethylase Contributes to gene activation

by binding to and

demethylating the gene

promoters to promote iPSC

generation

Liang G, He J, Zhang Y: Kdm2b promotes induced

pluripotent stem cell generation by facilitating

gene activation early in reprogramming. Nat Cell

Biol 2012, 14:457-466.

BAF Histone remodeling

complex

Increases reprogramming

efficiency by facilitating

enhanced Oct4 binding to

target promoters

Singhal N, Graumann J, Wu G, Arauzo-Bravo MJ, Han

DW, Greber B, Gentile L, Mann M, Scholer HR:

Chromatin-remodeling components of the BAF

complex facilitate reprogramming. Cell 2010,

141:943-955.

PADI4 Histone arginine

deiminase

Facilitates reprogramming by

citrullination of histone H1 and

replacing them from

chromatin

Christophorou MA, Castelo-Branco G, Halley-Stott

RP, Oliveira CS, Loos R, Radzisheuskaya A, Mowen

KA, Bertone P, Silva JC, Zernicka-Goetz M, et al.:

Citrullination regulates pluripotency and histone

H1 binding to chromatin. Nature 2014, 507:104-108.

H2A.X Histone variant A quality control marker to

distinguish the developmental

potentials of mouse ESCs or

iPSCs

Wu T, Liu Y, Wen D, Tseng Z, Tahmasian M, Zhong M,

Rafii S, Stadtfeld M, Hochedlinger K, Xiao A: Histone
variant H2A.X deposition pattern serves as a

functional epigenetic mark for distinguishing the

developmental potentials of iPSCs. Cell Stem Cell

2014, 15:281-294.
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Table 1 (Continued )

Epigenetic

modifications/

modifiers

Biochemical function Role for reprogramming Reference

TH2A/2B Histone variant Play important roles in

activation of paternal genome

during fertilization and OSKM-

induced somatic

reprogramming

Shinagawa T, Takagi T, Tsukamoto D, Tomaru C, Huynh

LM, Sivaraman P, Kumarevel T, Inoue K, Nakato R,

Katou Y, et al.: Histone variants enriched in oocytes

enhance reprogramming to induced pluripotent

stem cells. Cell Stem Cell 2014, 14:217-227.

NPM Nucleoplasmin Leads to global

decondensation of somatic

cell nuclei and thus facilitate

somatic cell nuclear transfer

(SCNT)

Tamada H, Van T N, Reed P, et al.: Chromatin

decondensation and nuclear reprogramming by

nucleoplasmin. Mol Cell Biol 2006, 26:1259-1271.

MacroH2A Histone variant Provide the inactive

X-chromosome and

pluripotency genes resistance

to reprogramming in donor

nuclei

Pasque V, Gillich A, Garrett N, Gurdon JB: Histone

variant macroH2A confers resistance to nuclear

reprogramming. EMBO J 2011, 30:2373-2387.

Aprataxin PNK-like factor (APLF) Histone H3/H4 tetramer

chaperone

Accelerate the process of

cellular reprogramming and

increase the efficiency of iPSC

generation

Syed KM, Joseph S, Mukherjee A, Majumder A,

Teixeira JM, Dutta D, Pillai MR: Histone chaperone

APLF regulates induction of pluripotency in murine

fibroblasts. J Cell Sci 2016, 129:4576-4591.

CAF-1 Histone chaperone Lead to a more accessible

chromatin structure at

enhancer elements early

during reprogramming

Cheloufi S, Elling U, Hopfgartner B, Jung YL, Murn J,

Ninova M, Hubmann M, Badeaux AI, Euong Ang C,

Tenen D, et al.: The histone chaperone CAF-1

safeguards somatic cell identity. Nature 2015,

528:218-224.

TET1 DNA dioxygenase Content-dependent manner

to promote/suppress

reprogramming; capable of

replacing essential

reprogramming factors during

reprogramming

Costa Y, Ding J, Theunissen TW, Faiola F, Hore TA,

Shliaha PV, Fidalgo M, Saunders A, Lawrence M,

Dietmann S, et al.: NANOG-dependent function of

TET1 and TET2 in establishment of pluripotency.
Nature 2013, 495:370-374.

Hu X, Zhang L, Mao SQ, Li Z, Chen J, Zhang RR, Wu

HP, Gao J, Guo F, Liu W, et al.: Tet and TDG mediate

DNA demethylation essential for mesenchymal-to-

epithelial transition in somatic cell reprogramming.

Cell Stem Cell 2014, 14:512-522.

Gao Y, Chen J, Li K, Wu T, Huang B, Liu W, Kou X,

Zhang Y, Huang H, Jiang Y, et al.: Replacement of

Oct4 by Tet1 during iPSC induction reveals an

important role of DNA methylation and

hydroxymethylation in reprogramming. Cell Stem

Cell 2013, 12:453-469.

Chen J, Gao Y, Huang H, Xu K, Chen X, Jiang Y, Li H,

Gao S, Tao Y, Wang H, et al.: The combination of Tet1

with Oct4 generates high-quality mouse-induced

pluripotent stem cells. Stem Cells 2015, 33:686-698.

TET2 DNA dioxygenase Recruited to Nanog and Esrrb

loci, essential for

transcriptional activation at

the pluripotency genes;

interact with NANOG to

increase reprogramming

efficiency to fully qualified

iPSCs

Doege CA, Inoue K, Yamashita T, Rhee DB, Travis S,

Fujita R, Guarnieri P, Bhagat G, Vanti WB, Shih A, et al.:

Early-stage epigenetic modification during

somatic cell reprogramming by Parp1 and Tet2.

Nature 2012, 488:652-655.

Costa Y, Ding J, Theunissen TW, Faiola F, Hore TA,

Shliaha PV, Fidalgo M, Saunders A, Lawrence M,

Dietmann S, et al.: NANOG-dependent function of

TET1 and TET2 in establishment of pluripotency.

Nature 2013, 495:370-374.

METTL3 m6A writer Positive influence for

reprogramming

Chen T, Hao YJ, Zhang Y, Li MM, Wang M, Han W, Wu

Y, Lv Y, Hao J, Wang L, et al.: m(6)A RNA methylation

is regulated by microRNAs and promotes

reprogramming to pluripotency. Cell Stem Cell 2015,

16:289-301.
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identified in mouse and human genome, DNMT1 for

maintenance of methylation and DNMT3A/B for de novo

methylation. All of the three DNMTs are enriched

in ESCs, suggesting their important roles in supporting

pluripotency of ESCs. Addition of their inhibitor 5-aza-

cytidine (5-AZA) during reprogramming greatly improves

the iPSC induction efficiency more than 30 folds [30],

indicating that DNA methylation may serve as a barrier for

somatic reprogramming.

Most recently, a group of mCpG derivatives has been

discovered as well as the catalyzing enzymes, the TET

(Ten-Eleven-Translocation) family dioxygenases, which

can convert 5-methylcytosine (5mC) to 5-hydroxymethyl-

cytosine (5hmC) [31,32]. The 5-hydroxymenthylcytosine

can be further oxidized to 5-formylcytosine (5fC) and

5-carboxylcytosine (5caC) by TET proteins. Both 5fC

and 5caC can be specifically recognized and replacement

by thymine DNA glycosylase (TDG), and then converted

back to unmodified cytosine through DNA base-excision

repair (BER) and nucleotide excision repair pathways to

achieve active DNA demethylation [33].

TET3 is the first enzyme identified in converting methyl-

cytosine by active DNA demethylation pathway during

zygotic activation. During zygotic activation, TET3 is

predominantly enriched in male pronucleus, and knock-

out of Tet3 in zygote can imped the active DNA demeth-

ylation of paternal genome and delay the subsequent

activation of paternal pluripotency-related genes during

early embryo development [34]. However, both Tet1 and

Tet3 knockout mice are partially lethal, which suggest

that redundant functions may exist in Tet family proteins

[34,35]. Tet family protein-dependent DNA modifica-

tions are also important for reprogramming. Both Tet2

and Parp1 are recruited to Nanog and Esrrb loci for

establishment of early epigenetic modifications, which

is essential for transcriptional activation at the pluripo-

tency genes to complete the reprogramming process [36].

Nanog can interact with Tet1 and Tet2, increasing the

reprogramming efficiency to fully qualified iPSCs [37].

Interestingly, Tet1 can work as a double-edged sword for

somatic cell reprogramming regulation. It can promote or

suppress the reprogramming depending on the absence or

presence of vitamin C [8]. In the absence of vitamin C,

Tet1 can boost somatic cell reprogramming independent

of MET; whereas addition of vitamin C during the

reprogramming process, or knockout of Tet1 can enhance

reprogramming. However, another study also showed that

depletion of Tet1 or its downstream TDG impaired

reprogramming by blocking MET, suggesting that

Tet1 may serve as a booster for mid-stage or late-stage

of reprogramming [38�]. Furthermore, Tet1 (T) is capable

of replacing essential reprogramming factors during

reprogramming. It can replace Oct4 and fulfill the somatic

cell reprogramming in combination with Sox2 (S), Klf4

(K) and c-Myc (M) [39]. Analyzing the efficient TSKM
www.sciencedirect.com 
secondary reprogramming system reveals that both 5mC

and 5hmC modifications increase at an intermediate stage

of the reprogramming process, correlating with a transi-

tion in the transcriptional profile. 5hmC enrichment is

involved in the demethylation and reactivation of genes

and regulatory regions that are important for pluripo-

tency, indicating that changes in DNA methylation and

hydroxymethylation play important roles in genome-wide

epigenetic remodeling during reprogramming. Impor-

tantly, the combination of Tet1 with Oct4 is enough to

reprogram the cells toward a high-quality pluripotent

state with normal 5hmC levels. These OT (Oct4-

Tet1)-iPSCs can also efficiently generate ‘all-iPSC’ mice

with a normal life span and no obvious tumorigenicity was

observed [40], compared to the OSKM-derived ‘all-iPSC’

mice. In summary, Tet1 can replace multiple Yamanaka

factors to achieve reprogramming, further elucidating

the important roles of epigenetic modifiers during this

process.

Epigenetic modifications and iPSC qualities
Epigenetic modifications and modifiers not only play

central roles during reprogramming from somatic cells

to iPSCs, but also contribute significantly to iPSC quali-

ties, such as H2A.X and Tet1 as mentioned above

[19�,40].

Moreover, abnormal epigenetic modifications accumu-

lated in the iPSCs can ultimately affect iPSC pluripo-

tency or tumorigenicity. Besides the histone variant H2A.

X and DNA hydroxylase Tet1 mentioned above, DNA

imprinting also influences iPSC qualities. By comparing

genetically identical mouse ESCs and iPSCs, studies

from Hochedlinger’s lab has demonstrated that the

expression state of imprinted Dlk1-Dio3 gene cluster on

chromosome 12qF1 can distinguish iPSCs with different

extents of pluripotency and allow for the prospective

identification of iPSC lines that have the full develop-

ment potential of ESCs [41]. However, studies from

Jaenisch group argued that loss of imprinting at this locus

does not strictly correlate with reduced pluripotency of

iPSCs. They believe that the level and stoichiometry of

reprogramming factors during the reprogramming process

play key roles in the resulting pluripotency of iPSCs. For

example, higher expression of OK combined with lower

expression of SM can produce iPSCs that efficiently

support generation of ‘all-iPSC mice’ by tetraploid (4n)

complementation [42]. In addition, deep comparison

between ‘4n-ON’ and the corresponding ‘4n-OFF’ iPSC

lines with the same genetic background and proviral

integration sites strongly indicates that methylation status

of the imprinted gene Zrsr1 also contributes importantly

to iPSC qualities [43].

Conclusions
The development of iPSC reprogramming technique

provides a reliable platform for stem cell research and
Current Opinion in Genetics & Development 2017, 46:156–163
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regenerative medicine studies. While the forced expres-

sion of transcriptional factor combinations can success-

fully reprogram somatic cells to pluripotent state, recent

Mechanistic studies reveal that the epigenetic modi-

fication and remodeling play key roles during the repro-

gramming process. Besides the epigenetic modifications

discussed above, the recently identified N6-methylade-

nosine (m6A), a conserved epi-transcriptomic modifica-

tion of eukaryotic mRNAs, also indicates has attracted

extensive attention. By comparing the mRNA transcrip-

tomes of four cell types with different degrees of plur-

ipotency, studies from Zhou lab have reported that

miRNAs regulates m6A modification levels through mod-

ulating the m6A writer METTL3 binding to mRNAs.

They also indicates that m6A has a positive influence on

reprogramming to pluripotency [44]. Studies in zebrafish

development have showed that Ythdf2, the m6A eraser,

plays important role in maternal mRNA clearance during

the maternal-to-zygotic transition [45]. Although several

important progresses have been made about this new

identified modification, the crosstalk between RNA

methylation and DNA methylation during reprogram-

ming is still largely unknown. Deep investigation of these

modifiers and remodeling factors will shed light on the

enhancement of both reprogramming efficiency and

improvements of iPSC qualities.
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